Borys Group at Montana State University

Experimental optical spectroscopy and nano-optics of quantum materials

Nicholas J. Borys

Department of Physics, Montana State University

Quantum technologies need new quantum materials

Quantum materials

Optical, electrical, and magnetic behavior that can create, store, transport, and/or manipulate quantum states of light and matter

What will future quantum devices be made from?

Improved scalability?

- Better performance?
- New quantum effects?

Borys Group at Montana State:

experimental nano-optics and quantum materials research

Optical spectroscopy group:

- How materials **absorb** light.
- How materials emit light.

Borys Group at Montana State:

experimental nano-optics and quantum materials research

ACS Nano 13, 1284 (2019).

Exploration of novel nanoscale optoelectronic systems

ACS Nano 13, 5646 (2019). Nature Photonics 12, 402 (2018).

A versatile quantum-optical spectroscopy setup

- μPL, μRaman, μAbsorption, μPolarization spectroscopy & imaging.
- Temp: 3.5 K 350 K.
- Spatial resolutions: >300 nm.

- Time resolution: 30 ps.
- Detection wavelengths: 400 nm 1100 nm
- Laser wavelengths: 400 nm 2000 nm

Probing materials by analyzing their interactions with light

Sample courtesy of the Jim Hone Group at Columbia University

- Optical nano-imaging.
- AFM nano-imaging
- Spatial resolutions: <20 nm.
- Temp: 300K.

Bottom optical microscope

AFM probe illuminated with an excitation laser

Top optical microscope (lights on)

Side optical microscope (lights off)

Significant nanoscale heterogeneity resolved with nano-PL

Nat. Commun. **6**, 7993 (2015). Front. Phys. **11**, 117804 (2016). 2D Mater. **4**, 021024 (2017).

Nano-optics of quantum materials at Montana State

New materials to harness quantum phenomena on ultra-small length scales and ultrashort timescales.

quantum sensing • quantum information science • next-generation optoelectronics fundamental many-body physics • non-equilibrium systems

Borys Lab – <u>www.boryslab.com</u> – nicholas.borys@montana.edu

